#

ArrayFire Ruby Bindings
(Part IV : BLAS and LAPACK routines)

This post covers how to use BLAS and LAPACK routines with ArrayFire-rb, and how these functions have been implemented by creating Ruby bindings to ArrayFire C API.

The performance benchmarks for ArrayFire against NMatrix can be represented by the following figures. The code used for benchmarking and generating the plots can be found here and be used to reproduce similar plots.

Performance metrics

BLAS Routines
LAPACK Routines


(Note: The above benchmarks have been done on an AMD FX 8350 octacore processor and Nvidia GTX 750Ti GPU. CUDA backend of ArrayFire was used with double floating points.)

The figure shows that ArrayFire takes the least computation time of all. ArrayFire is 3 e +6 times faster than NMatrix for JRuby and NMatrix for Ruby(not BLAS) whereas 7 e +5 times faster than NMatrix for Ruby(using BLAS).

For LAPACK routines, like calculating determinant and lower-upper factorization, ArrayFire is 100 times faster than NMatrix for JRuby whereas 6 times faster than NMatrix for Ruby(using LAPACKE).

Lets take a look at the implementation.

BLAS Routines

All the BLAS methods are singleton_methods.

void Init_arrayfire() {
  ArrayFire = rb_define_module("ArrayFire");

  Blas = rb_define_class_under(ArrayFire, "BLAS", rb_cObject);
  rb_define_singleton_method(Blas, "matmul", (METHOD)arf_matmul, 4);
  rb_define_singleton_method(Blas, "dot", (METHOD)arf_dot, 4);
  rb_define_singleton_method(Blas, "transpose", (METHOD)arf_transpose, 1);

}

arf_matmul and arf_transpose call af_matmul and af_transpose respectively.


static VALUE arf_matmul(VALUE self, VALUE left_val, VALUE right_val, VALUE left_prop_val, VALUE right_prop_val){

  afstruct* left;
  afstruct* right;
  afstruct* result = ALLOC(afstruct);

  Data_Get_Struct(left_val, afstruct, left);
  Data_Get_Struct(right_val, afstruct, right);

  af_mat_prop left_mat_prop = arf_mat_type_from_rbsymbol(left_prop_val);
  af_mat_prop right_mat_prop = arf_mat_type_from_rbsymbol(right_prop_val);

  af_matmul(&result->carray, left->carray, right->carray, left_mat_prop, right_mat_prop);

  af_print_array(result->carray);

  return Data_Wrap_Struct(CLASS_OF(left_val), NULL, arf_free, result);
}

static VALUE arf_transpose(VALUE self, VALUE input){
  afstruct* obj;
  afstruct* result = ALLOC(afstruct);

  Data_Get_Struct(input, afstruct, obj);

  af_transpose(&result->carray, obj->carray, false);

  af_print_array(result->carray);

  return Data_Wrap_Struct(CLASS_OF(input), NULL, arf_free, result);
}

af_matmul expects the property of matrices passed to it. For example, af_mat_prop AF_MAT_TRANS signifies that the matrix is transposed. So, to pass the symbols to Ruby C function arf_matmul, I have used the code given below. I have creared a list of values MAT_PROPERTIES and a function arf_mat_type_from_symbol which is responsible for figuring out af_mat_prop from the symbol.


std::map<char*, size_t> MAT_PROPERTIES = {
  {"AF_MAT_NONE", 0},
  {"AF_MAT_TRANS", 1},
  {"AF_MAT_CTRANS", 2},
  {"AF_MAT_CONJ", 4},
  {"AF_MAT_UPPER", 32},
  {"AF_MAT_LOWER", 64},
  {"AF_MAT_DIAG_UNIT", 128},
  {"AF_MAT_SYM", 512},
  {"AF_MAT_POSDEF", 1024},
  {"AF_MAT_ORTHOG", 2048},
  {"AF_MAT_TRI_DIAG", 4096},
  {"AF_MAT_BLOCK_DIAG", 8192}
};


af_mat_prop arf_mat_type_from_rbsymbol(VALUE sym) {
  ID sym_id = SYM2ID(sym);

  for(std::map<char*, size_t>::value_type& entry : MAT_PROPERTIES) {
    if (sym_id == rb_intern(entry.first)) {
      return static_cast<af_mat_prop>(entry.second);
    }
  }

  VALUE str = rb_any_to_s(sym);
  rb_raise(rb_eArgError, "invalid matrix type symbol (:%s) specified",
   RSTRING_PTR(str));
}

So, now I can check if the bindings work successfully.

$ rake pry
pry -r './lib/arrayfire.rb'
[1] pry(main)> left = ArrayFire::Af_Array.new 2 , [3,3] , [1, 4, 6, 4, 11 , 2 ,-5, 8, 10]
No Name Array
[3 3 1 1]
    1.0000     4.0000    -5.0000
    4.0000    11.0000     8.0000
    6.0000     2.0000    10.0000

=> #<ArrayFire::Af_Array:0x000000014e56c8>
[2] pry(main)> right = ArrayFire::Af_Array.new 2 , [3,2] , [1, 0, 8, 10, -11, 8]
No Name Array
[3 2 1 1]
    1.0000    10.0000
    0.0000   -11.0000
    8.0000     8.0000

=> #<ArrayFire::Af_Array:0x00000001591db0>
[3] pry(main)> result = ArrayFire::BLAS.matmul(left, right, :AF_MAT_NONE, :AF_MAT_NONE)
No Name Array
[3 2 1 1]
  -39.0000   -74.0000
   68.0000   -17.0000
   86.0000   118.0000

=> #<ArrayFire::Af_Array:0x000000016136f8>
[4] pry(main)> transposed = ArrayFire::BLAS.transpose(left)
No Name Array
[3 3 1 1]
    1.0000     4.0000     6.0000
    4.0000    11.0000     2.0000
   -5.0000     8.0000    10.0000

=> #<ArrayFire::Af_Array:0x00000001762f68>

It works!.

LAPACK Routines

LAPACK routines similar to BLAS ones are singleton methods.

Lapack = rb_define_class_under(ArrayFire, "LAPACK", rb_cObject);
rb_define_singleton_method(Lapack, "svd_func", (METHOD)arf_svd_func, 4);
rb_define_singleton_method(Lapack, "svd_inplace_func", (METHOD)arf_svd_inplace_func, 1);
rb_define_singleton_method(Lapack, "lu_func", (METHOD)arf_lu_func, 4);
rb_define_singleton_method(Lapack, "lu_inplace_func", (METHOD)arf_lu_inplace_func, 1);
rb_define_singleton_method(Lapack, "qr_func", (METHOD)arf_qr_func, 4);
rb_define_singleton_method(Lapack, "qr_inplace_func", (METHOD)arf_qr_inplace_func, 1);
rb_define_singleton_method(Lapack, "cholesky_func", (METHOD)arf_cholesky_func, 3);
rb_define_singleton_method(Lapack, "cholesky_inplace_func", (METHOD)arf_cholesky_inplace_func, 1);
rb_define_singleton_method(Lapack, "solve_func", (METHOD)arf_solve_func, 0);
rb_define_singleton_method(Lapack, "solve_lu_func", (METHOD)arf_solve_lu_func, 0);
rb_define_singleton_method(Lapack, "inverse", (METHOD)arf_inverse, 1);
rb_define_singleton_method(Lapack, "rank", (METHOD)arf_rank, 1);
rb_define_singleton_method(Lapack, "det", (METHOD)arf_det, 1);
rb_define_singleton_method(Lapack, "norm", (METHOD)arf_norm, 1);
rb_define_singleton_method(Lapack, "is_lapack_available", (METHOD)arf_is_lapack_available, 0);

LAPACK.svd must return multiple objects and hence calls LAPACK.arf_svd_func. The implementation is as follows.


static VALUE arf_svd_func(VALUE self, VALUE u_val, VALUE s_val, VALUE vt_val, VALUE val){
  afstruct* input;
  afstruct* u;
  afstruct* s;
  afstruct* vt;

  Data_Get_Struct(val, afstruct, input);
  Data_Get_Struct(u_val, afstruct, u);
  Data_Get_Struct(s_val, afstruct, s);
  Data_Get_Struct(vt_val, afstruct, vt);

  af_svd(&u->carray, &s->carray, &vt->carray, input->carray);

  return Qtrue;
}

module ArrayFire
  class LAPACK

    def self.svd(af_array)
      u =  ArrayFire::Af_Array.new
      s =  ArrayFire::Af_Array.new
      vt = ArrayFire::Af_Array.new
      ArrayFire::LAPACK.svd_func(u, s, vt, af_array)
      return u, s, vt
    end
  end
end

LAPACK.det calls af_det to calculate the determinant. Currently, I haven’t created support for complex dtype. So, I have ignored the imaginary part of the result if it is not a real number.


static VALUE arf_det(VALUE self, VALUE val){
  afstruct* matrix;
  double det_real, det_imag;

  Data_Get_Struct(val, afstruct, matrix);

  af_det(&det_real, &det_imag, matrix->carray);
  return DBL2NUM(det_real);
}


Now, we can check the elementwise operations using pry.

$ rake pry
pry -r './lib/arrayfire.rb'
[1] pry(main)> matrix = ArrayFire::Af_Array.new 2, [4,2], [1,3,5,7,2,4,6,8]
No Name Array
[4 2 1 1]
    1.0000     2.0000
    3.0000     4.0000
    5.0000     6.0000
    7.0000     8.0000

=> #<ArrayFire::Af_Array:0x0000000265cbe0>
[2] pry(main)> u , s, vt = ArrayFire::LAPACK.svd(matrix)
=> [#<ArrayFire::Af_Array:0x000000026ff070>, #<ArrayFire::Af_Array:0x000000026ff048>, #<ArrayFire::Af_Array:0x000000026ff020>]
[3] pry(main)> ArrayFire::Util.print_array(u)
No Name Array
[4 4 1 1]
   -0.1525    -0.8226    -0.3945    -0.3800
   -0.3499    -0.4214     0.2428     0.8007
   -0.5474    -0.0201     0.6979    -0.4614
   -0.7448     0.3812    -0.5462     0.0407

=> true
[4] pry(main)> ArrayFire::Util.print_array(s)
No Name Array
[2 1 1 1]
   14.2691
    0.6268

=> true
[5] pry(main)> ArrayFire::Util.print_array(vt)
No Name Array
[2 2 1 1]
   -0.6414    -0.7672
    0.7672    -0.6414

=> true
[6] pry(main)> left = ArrayFire::Af_Array.new 2 , [3,3] , [1, 4, 6, 4, 11 , 2 ,-5, 8, 10]
No Name Array
[3 3 1 1]
    1.0000     4.0000    -5.0000
    4.0000    11.0000     8.0000
    6.0000     2.0000    10.0000

=> #<ArrayFire::Af_Array:0x00000002984c78>
[7] pry(main)> det = ArrayFire::LAPACK.det(left)
=> 415.9999694824219

It works!

Conclusion

We can now use ArrayFire-rb for linear algebra since the BLAS and LAPACK routines are in place. Also, the performance is outstanding.

In the next blog, I will explain about using the Random Engine generator and Statistics methods for ArrayFire.

#
Subscribe for exclusive

news and updates!